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Abstract

The literature on game-theoretic equilibrium finding predomi-
nantly focuses on single games or their repeated play. Never-
theless, numerous real-world scenarios feature playing a game
sampled from a distribution of similar, but not identical games,
such as playing poker with different public cards or trading
correlated assets on the stock market. As these similar games
feature similar equilibra, we investigate a way to accelerate
equilibrium finding on such a distribution. We present a novel
“learning not to regret” framework, enabling us to meta-learn
a regret minimizer tailored to a specific distribution. Our key
contribution, Neural Predictive Regret Matching, is uniquely
meta-learned to converge rapidly for the chosen distribution
of games, while having regret minimization guarantees on any
game. We validated our algorithms’ faster convergence on a
distribution of river poker games. Our experiments show that
the meta-learned algorithms outpace their non-meta-learned
counterparts, achieving more than tenfold improvements.

1 Introduction
Regret minimization, a fundamental concept in online con-
vex optimization and game theory, plays an important role
in decision-making algorithms (Nisan et al. 2007). In games,
a common regret minimization framework is to cast each
player as an independent online learner. This learner inter-
acts repeatedly with the game, which is represented by a
black-box environment and encompasses the strategies of all
other players or the game’s inherent randomness. When all
the learners employ a regret minimizer, their average strat-
egy converges to a coarse correlated equilibrium (Hannan
1957; Hart and Mas-Colell 2000). Furthermore, in two-player
zero-sum games, the average strategy converges to a Nash
equilibrium (Nisan et al. 2007). Regret minimization has
become the key building block of many algorithms for find-
ing Nash equilibria in imperfect-information games (Bowling
et al. 2015; Moravcik et al. 2017; Brown and Sandholm 2018;
Brown et al. 2020; Brown and Sandholm 2019b; Schmid et al.
2021).

While these algorithms made progress in single game play-
ing, in many real-world scenarios, players engage in more
than just one isolated game. For instance, they might play

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

poker with various public cards, solve dynamical routing
problems, or trade correlated assets on the stock market.
These games, while similar, are not identical and can be
thought of as being drawn from a distribution. Despite its
relevance, this setting has been largely unexplored, with a
few recent exceptions such as (Harris et al. 2022; Zhang et al.
2022).

In this work, we shift focus to this distributional setting.
The black-box environment which the learners interact with
corresponds to a game sampled from a distribution. This per-
spective aligns with the traditional regret minimization frame-
work, but with an added twist: the game itself is sampled.
Our goal is to reduce the expected number of interactions
needed to closely approximate an equilibrium of the sampled
game. This is crucial both for online gameplay and offline
equilibrium learning, as fewer steps directly translate to a
faster algorithm.

In either the single-game or distributional settings, the
worst-case convergence of regret minimizers against a strict
adversary cannot occur at a rate faster than O(T−1/2) (Nisan
et al. 2007). However in practice, algorithms often converge
much faster than the worst-case bound suggests. Consider
CFR+ (Tammelin 2014), which empirically converges at the
rate of O(T−1) in poker games1 despite having the same
O(T−1/2) worst case guarantees (Burch 2018). Another ex-
ample of variations in practical performance is discounted
CFR with three parameters (DCFRα,β,γ), where the authors
reported that they “found the optimal choice of α, β and γ
varied depending on the specific game” (Brown and Sand-
holm 2019a).

These empirical observations are in line with no-free
lunch theorems for optimization, which state that no learn-
ing algorithm can dominate across all domains (Wolpert and
Macready 1997). Thus to improve performance on a domain,
it is necessary to use a specialized algorithm, at the expense
of deteriorating the performance outside of this domain.

1The strong empirical performance of the algorithm was one
of the key reasons behind essentially solving Limit Texas Holdem
poker, one of the largest imperfect information games to be solved to
this day (Bowling et al. 2015). CFR+ required only 1, 579 iterations
to produce the final strategy, far less than what the worst-case bound
suggests.



A popular approach to find such algorithms is the
meta-learning paradigm, namely a variant of “learning to
learn” (Andrychowicz et al. 2016). In the meta-learning
framework, one learns the optimization algorithm itself. The
simplest approach is to directly parametrize the algorithm
with a neural network, and train it to minimize regret on the
distribution of interest. While the meta-learned network can
quickly converge in the domain it has been trained on (e.g.
poker games), it can be at the cost of performance (or even
lack of convergence) out-of-distribution. This is because the
neural network is not necessarily a regret minimizer.

To provide the convergence guarantees, we introduce
meta-learning within the predictive regret framework (Fa-
rina, Kroer, and Sandholm 2021). Predictive regret minimiza-
tion has convergence guarantees regardless of the predic-
tion, while a better prediction guarantees lower regret, and a
perfect prediction results in zero regret (Farina, Kroer, and
Sandholm 2021). This results in an algorithm that combines
the best of both worlds – fast convergence in the domain in
question while providing general convergence guarantees.

A particularly interesting application of our approach is
when the resulting regret minimizer is used in an online
search algorithm (Moravcik et al. 2017; Brown and Sandholm
2018; Schmid et al. 2021). When the agent is deployed to
face an opponent in chess, poker or other games, it has a
limited time to make a decision. The agent needs to minimize
regret within its search tree as quickly as possible — that is,
with as few iterations as possible. This is because a single
iteration evaluates the leaf nodes of a search tree using a value
function, which is typically represented by a slow-to-compute
neural network. In this context, the critical measure is the
speed during the actual deployment time and online search,
that is, when facing the opponent. The offline computation is
typically used to learn high quality value functions to be used
within search and can take even long time. With our method,
one can now also use the offline computation to meta-learn
the regret minimizer itself, resulting in substantially faster
convergence during the play time.

In experiments, we first evaluate our algorithms on a dis-
tribution of matrix games to understand what the algorithms
learn. Next, we turn our attention to search with value func-
tions in a sequential decision setting. We show that for a dis-
tribution over river poker games, our meta-learned algorithms
outpace their non-meta-learned counterparts, achieving more
than tenfold improvements.

2 Prior Work
Regret minimization is a powerful framework for online con-
vex optimization (Zinkevich 2003), with regret matching as
one of the most popular algorithms in game applications (Hart
and Mas-Colell 2000). Counterfactual regret minimization
allows to use that framework in sequential decision making,
by decomposing the full regret to individual states (Zinke-
vich et al. 2008). A recently introduced extension of regret
matching, the predictive regret matching (Farina, Kroer, and
Sandholm 2021) was shown to significantly outperform prior
regret minimization algorithms in self-play across a large
selection of games. The authors also provided a close con-
nection between the prediction and the regret, which offers

additional insight into the algorithm and is a clear inspiration
for our work.

Meta-learning has a long history when used for opti-
mization (Schmidhuber 1992, 1993; Thrun and Thrun 1996;
Andrychowicz et al. 2016). This work rather considers meta-
learning in the context of regret minimization. Many prior
works explored modifications of regret matching to speed-up
its empirical performance in games, such as CFR+ (Tam-
melin 2014), DCFR (Brown and Sandholm 2019a), Lazy-
CFR (Zhou et al. 2018), ECFR (Li et al. 2020) or Linear CFR
(Brown et al. 2019). However, as the no-free lunch theorems
for optimization state, no (learning) algorithm can dominate
across all domains (Wolpert and Macready 1997). Therefore,
to improve performance on a specific domain, it is necessary
to use a specialized algorithm, at the expense of deteriorating
the performance outside of this domain.

We thus turn to meta-learning the regret minimizers. It was
shown that similar games have similar equilibria, justifying
the use of meta-learning in games to accelerate equilibrium
finding (Harris et al. 2022). A key difference between our
and prior works is that they primarily consider settings where
the game utilities come from a distribution, rather than sam-
pling the games themselves. Thus, one of their requirements
is that the strategy space itself must be the same. In (Az-
izi et al. 2022), they consider bandits in Bayesian settings.
In (Harris et al. 2022), the authors “warm start” the initial
strategies from a previous game, making the convergence
provably faster. This approach is “path-dependant”, in that
it depends on which games were sampled in the past. Both
works are fundamentally different from ours, as they use
meta-learning online, while we are making meta-learning
preparations offline.

To our best knowledge, the most similar to our offline meta-
learning setting is AutoCFR (Xu et al. 2022). They are not
restricted to the same strategy spaces in games like previous
works, as they use evolutionary search for an algorithm that is
local to each decision state. They search over a combinatorial
space, defined by an algebra which generalizes CFR family
of algorithms, to find an algorithm that performs well across
many games. Our approach rather learns a neural network via
gradient descent to perform the regret minimization, allowing
us to learn any function representable by the network archi-
tecture. Furthermore, unlike AutoCFR, we provide strong
regret minimization guarantees.

We also give a quick overview of the recent work on search
with value functions, as we use regret minimization in this
context in our experiments. The combination of decision-time
search and value functions has been used in the remarkable
milestones where computers bested their human counterparts
in challenging games — DeepBlue for Chess (Campbell,
Hoane Jr, and Hsu 2002) and AlphaGo for Go (Silver et al.
2016). This powerful framework of search with (learned)
value functions has been extended to imperfect information
games (Schmid 2021), where regret minimization is used
within the search tree. Regret minimization has quickly be-
come the underlying equilibrium approximation method for
search (Moravcik et al. 2017; Brown and Sandholm 2018;
Zarick et al. 2020; Serrino et al. 2019; Brown et al. 2020;
Schmid et al. 2021).



3 Background
We begin by describing the regret minimisation frame-
work (Nisan et al. 2007). An online algorithm m for the re-
gret minimization task repeatedly interacts with an unknown
environment g through available actions A, receiving a vec-
tor of per-action rewards x. The goal of regret minimization
algorithm is then to maximize its hindsight performance (i.e.
to minimize regret).

Formally, at each step t ≤ T , the algorithm submits a
strategy σt from a probability simplex ∆|A| and observes
the subsequent reward xt ∈ R|A| returned from the environ-
ment g. The rewards are computed with an unknown function
concave in σ and are bounded. We denote by ∆max the differ-
ence between the highest and lowest reward the environment
can produce. The difference in reward obtained under σt and
any fixed action strategy is measured by the instantaneous
regret r(σt,xt) = xt − ⟨σt,xt⟩1. A sequence of strate-
gies and rewards, submitted by algorithm m and returned by
environment g, up to a horizon T , is

x0 → σ1 → x1 → σ2 → · · · → xT−1 → σT → xT , (1)

where we set x0 = 0 for notational convenience (see also
Figure 1). The cumulative regret over the entire sequence is

RT =

T∑
t=1

r(σt,xt).

The algorithm m is a regret minimizer, if the external
regret Rext,T =

∥∥RT
∥∥
∞ grows sublinearly in T for an arbi-

trary sequence of rewards {xt}Tt=1. Then the average strategy
σt = 1

t

∑t
τ=1 σ

τ converges to a coarse correlated equilib-
rium (Nisan et al. 2007).

Finally, we define exploitability of a strategy σ (i.e. the
gap from a Nash equilibrium) as

expl(σ) = max
σ∗

min
x
⟨σ∗,x(σ∗)⟩ −min

x
⟨σ,x(σ)⟩,

where x(σ) is the reward vector admissible by the envi-
ronment as a response to strategy σ. Note that this exactly
corresponds to the standard definition of exploitability of a
player’s strategy in a two-player zero-sum game when play-
ing with an environment controlled by an adversary.

4 Learning not to Regret
We first describe the meta-learning framework for regret min-
imization. Then we introduce two variants of meta-learned
algorithms, with and without regret minimization guarantees.

4.1 Meta-Learning Framework
On a distribution of regret minimization tasks G, we aim to
find an online algorithm mθ with some parameterization θ
that efficiently minimizes the expected external regret after
T steps. The expected external regret of mθ is

L(θ) = E
g∼G

[
Rext,T ] = E

g∼G

[
max
a∈A

T∑
t=1

ra
(
σt
θ,x

t
)]

, (2)

...

Figure 1: The sequence of strategies {σt}Tt=1 submitted by an
online algorithm and the rewards {xt}Tt=1 received from the
environment. The reward x0 = 0 initializes the algorithms
to produce the first strategy σ1.

where σt
θ is the strategy selected at step t by the online algo-

rithm mθ. We train a recurrent neural network parameterized
by θ to minimize (2). By utilizing a recurrent architecture
we can also represent algorithms that are history and/or time
dependent. This dependence is captured by a hidden state h
of the recurrent network. See Section 5 for details.

The choice to minimize external regret in particular is
arbitrary. This is because the rewards {xτ}Tτ=1 that come
from the environment are constant2 w.r.t. θ and the derivative
of any element of the cumulative regret vector RT is thus the
same, meaning3

∂L
∂σt

θ

=
∂

∂σt
θ

E
g∼G

[
T∑

τ=1

−⟨στ
θ ,x

τ ⟩

]
= − E

g∼G

[
xt
]
.

Consequently, if the objective (2) is reformulated using other
kinds of regrets, it would result in the same meta-learning
algorithm. This is because regrets measure the difference
between reward accumulated by some fixed strategy, and by
the algorithm mθ. Since the former is a constant at meta-
train time, minimizing (2) is equivalent to maximizing the
reward ⟨σt,xt⟩ the algorithm mθ gets at every t ≤ T in a
task g ∼ G, given the previously observed rewards {xτ}t−1

τ=1.
Next, we will show two variants of the algorithm mθ.

4.2 Neural Online Algorithm
The simplest option is to parameterize the online algorithm
mθ to directly output the strategy σt

θ. We refer to this setup
as neural online algorithm (NOA).

At the step t, the algorithm mθ receives as input4 the re-
wards xt and cumulative regret Rt and keeps track of its
hidden state ht. We estimate the gradient ∂L/∂θ by sam-
pling a batch of tasks and applying backpropagation through
the computation graph as shown in Figure 2a. The gradient
originates in the final external regret Rext,T and propagates
through collection of regrets r1...T , the strategies σ1...T and
hidden states h0...T−1. We don’t allow the gradient to propa-
gate through the rewards2 x0...T−1 or the cumulative regrets
R1...T entering the network. Thus, the only way to influence

2This is because the environment is a black-box, i.e. how the
reward depends on the chosen strategy is unknown to mθ .

3When recurrent architecture is used, the strategy also depend
on strategies used in previous steps, intruding extra terms.

4We also input additional contextual information, see Section 5.
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(b) Neural predictive regret matching (NPRM).

Figure 2: Computational graphs of the proposed algorithms. The gradient flows only along the solid edges. The h denotes the
hidden state of the neural network. See also Figure 1 for visual correspondence of the strategy and reward sequence.

the earlier optimization steps is through the hidden states
h0...T−1 of the neural network.5

In our experiments, we observe strong empirical perfor-
mance of NOA. However, NOA is not guaranteed to min-
imize regret. This is because, similar to policy gradient
methods, it is simply maximizing the cumulative reward
Eg∼G

[∑T
t=1 x

t
]
, which is not a sufficient condition to be a

regret minimizing algorithm (Blackwell et al. 1956).

4.3 Neural Predictive Regret Matching
In order to get convergence guarantees, we turn to the re-
cently introduced predictive regret matching (PRM) (Fa-
rina, Kroer, and Sandholm 2021), see also Algorithm 1.
The PRM is an extension of regret matching (RM) (Hart
and Mas-Colell 2000) which uses an additional predic-
tor π : (•) → R|A|. The algorithm has two functions,
NEXTSTRATEGY and OBSERVEREWARD, which alternate
over the sequence (1). The predictor makes a prediction pt+1

of the next anticipated regret6 rt+1. The PRM algorithm
incorporates pt+1 to compute the next strategy7 σt+1. The
RM algorithm can be instantiated as PRM with π = 0. Un-
less stated otherwise, we use PRM with a simple predictor
π : (σt,xt) → pt+1 = r(σt,xt), i.e. it predicts the next
observed rewards will be the same as the current ones.8

We introduce neural predictive regret matching (NPRM),
a variant of PRM which uses a predictor πθ parameterized
by a recurrent neural network θ. The predictor πθ receives
as input4 the rewards xt, cumulative regret Rt and hidden
state ht. We train πθ to minimize Eq. (2), just like NOA.
The computational graph is shown in Figure 2b. The out-
put of the network pt+1 is used in NEXTSTRATEGY to ob-
tain the strategy σt+1. Similar to NOA, the gradient ∂L/∂θ
originates in the final external regret Rext,T and propagates

5This is similar to the “learning to learn” setup (Andrychowicz
et al. 2016)

6Originally, the predictive regret was formulated in terms of next
reward. However, for our application predicting next regret proved
more stable as the network outputs don’t mix.

7Note the prediction can change the actual observed xt+1, unless
we are at a fixed point.

8This predictor was used in the original work.

Algorithm 1: Predictive regret matching
(Farina, Kroer, and Sandholm 2021)

1 R0 ← 0 ∈ R|A|, x0 ← 0 ∈ R|A|

2 function NEXTSTRATEGY()
3 ξt ← [Rt−1 + pt]+

4 if ∥ξt∥1 > 0 return σt ← ξt / ∥ξt∥1
5 else return σt ← arbitrary point in ∆|A|

6 function OBSERVEREWARD(xt)
7 Rt ← Rt−1 + r(σt,xt)

8 pt+1 ← π(xt)

through the collection of regrets r1...T , the strategies σ1...T ,
the predictions p1...T , and hidden states h0...T−1. Again,
we do not propagate the gradient through the rewards2
x0...T−1 or through the cumulative regrets R1...T entering
the network.5 Any time-dependence comes only through the
hidden states h0...T−1. It is interesting to note NPRM can
learn to recover both RM and PRM as it receives all the
information needed, i.e. x and R.

Importantly, we show that the cumulative regret of NPRM
grows sub-linearly, making it a regret minimizer.
Theorem 1 (Correctness of Neural-Predicting). Let α ≥ 0,
and πθ be a regret predictor with outputs bounded in
[−α, α]|A|. Then PRM which uses πθ is a regret minimizer.

Proof. Since the reward x for any action is bounded by the
maximum utility difference ∆max, the regret r for any action
is bounded by 2∆max. Thus, for an arbitrary prediction p it
holds

∥r(σ,x)− p∥2 ≤ (2∆max + α)|A|.
Using the PRM regret bound (Farina, Kroer, and Sandholm
2021, Thm 3), we obtain

Rext,T ≤
√
2

(
T∑

t=1

∥∥r(σt,xt)− pt
∥∥
2

) 1
2

≤
√
2 ((2∆max + α)|A|T )

1
2 ∈ O

(√
T
)
.



As NPRM is regret minimizing regardless of the prediction
p, our network outputs p rather than strategy σ as for NOA.
This allows us to achieve the best of both words – adaptive
learning algorithm with a small cumulative regret in our
domain, while keeping the O(T−1/2) worst case average
regret guarantees. Note that O(T−1/2) is the best achievable
bound in terms of T against a black-box (Nisan et al. 2007).

5 Experiments
We focus on application of regret minimization in games, see
Appendix A for their detailed description. Specifically, we
apply regret minimization to one-step lookahead search with
(approximate) mini-max subgame value functions. See also
Section 1 for motivation of this approach.

For both NOA and NPRM, the neural network architecture
we use is a two layer LSTM. For NOA, these two layers
are followed by a fully-connected layer with the softmax
activation. For NPRM, we additionally scale all outputs by
α ≥ 2∆max, ensuring any regret vector can be represented
by the network. In addition to the last observed reward and
the cumulative regret, the networks also receive contextual
information corresponding to the player’s observations.

We minimize objective (2) for T = 64 iterations over 512
epochs using the Adam optimizer.9 Other hyperparameters10

were found via a grid search. For evaluation, we compute ex-
ploitability of the strategies up to 2T = 128 iterations to see
whether the algorithms can generalize outside of the horizon
T they were trained on and whether they keep reducing the
exploitability. We train and evaluate both NOA and NPRM
and compare our methods against (P)RM. Our results are
presented in Figure 3.

The section is structured as follows. First, we illustrate how
our algorithms behave using a simple distribution of matrix
games. Next, we show how their performance extends to the
sequential setting, where we evaluate on river poker. To illus-
trate viability of our approach, we study the computational
time reduction achieved by our algorithms. Next, we demon-
strate our algorithms are tailored to the training domain, and
thus their performance can deteriorate out-of-distribution.
Finally, we discuss several possible modifications of our ap-
proach.

5.1 Matrix Games
In the case of matrix games, a value function corresponds to
playing against a best responding opponent.11 We use a mod-
ification of the standard rock paper scissors game
and perturb two elements of the utility matrix to generate a
distribution G, see Appendix A.1.

Our results are presented in Figure 3. First, we consider
the distribution to have probability 1 for a single game, i.e.
the game is fixed. In this setting, our algorithms can simply
overfit and output a strategy close to a Nash equilibrium.

9We use cosine learning rate decay from 10−3 to 3 · 10−4.
10Specifically, the size of the LSTM layer, the number of games

in each batch gradient update, and the regret prediction bound α.
11A simultaneous-move matrix game can be formulated as a

strategy-equivalent two step sequential game. The value function
assumes optimal play by the opponent, i.e. a best response.

Target 4 · 10−1 10−1 6 · 10−2 2 · 10−2

RM 20 128 212 615
PRM 36 158 261 793
NOA 1 18 41 157

NPRM 1 16 26 118

Table 1: Number of steps each algorithm requires to reach
target exploitability on river poker (sampled) in expec-
tation.

Their convergence is very fast compared to (P)RM. Notice
that NOA outperforms NPRM in this setting. We hypothesize
there are two main reasons for this difference. First, NPRM
is more restricted in its functional dependence. Second, the
gradient of NPRM vanishes, resp. explodes when the cumu-
lative regret is large, resp. small, making overfitting more
challenging.

Next, we sample games in the perturbed setting. Our meth-
ods keep outperforming (P)RM – even after the horizon T on
which they were trained. To further illustrate the differences
between the meta-learned algorithms and (P)RM, we plot
the current and average strategies selected by each algorithm
in Figure 4. Both NOA and NPRM are initially close to the
equilibrium and converge relatively smoothly. In contrast,
(P)RM visit large portion of the policy space even in later
steps, making the convergence slower.

Notice that RM exhibits similar performance to PRM both
in matrix and sequential games. This may seem surprising,
as PRM was shown to be stronger than RM in self-play
settings (Farina, Kroer, and Sandholm 2021). However, the
reason is that we minimize regret against an adversary rather
than the self-play opponent. PRM performs well when the
last-observed reward is a good prediction of the next one.
This is true in self-play, as the opponent does not radically
change their strategy between iterations. However, it is no
longer the case when the values are coming from a value
function where arbitrarily small modification of the input can
lead to large changes of the output (Schmid 2021).

5.2 Sequential Games
To evaluate our methods for sequential games, we use the
public root state of river poker – a subgame of no-limit
Texas Hold’em Poker with approximately 62 thousand states.
The distribution G is generated by sampling public cards
uniformly, while the player beliefs are sampled in the same
way as in (Moravcik et al. 2017). For the value function, we
used 1,000 iterations of CFR+. See Appendix A.2 for more
details.

Our setup allows NOA and NPRM to learn to minimize
regret in a contextualized manner, specific to each decision
state. This is achieved by augmenting the input of the network
by features corresponding to the player’s observation at each
state. In this case, the input is the the beliefs for both players
and an encoding of private and public cards.

Our results are presented in Figure 3. We show that both
NOA and NPRM are able to approximate an equilibrium
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Figure 3: Comparison of non-meta-learned algorithms (RM, PRM) with meta-learned algorithms (NOA, NPRM), on a small
matrix game and a large sequential game and for a single fixed game versus a whole distribution over games. The figures show
exploitability of the average strategy σt. The y-axis uses a logarithmic scale. Vertical dashed lines separate two regimes: training
(up to T steps) and generalization (from T to 2T steps). Colored areas show standard error for the sampled settings.
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Figure 4: For each algorithm, we show the trajectories of current strategies σt (top row) and average strategies σt (bottom row)
on rock paper scissors (sampled) for 2T = 128 steps. The red cross shows the equilibrium of the sampled game. The
trajectories start in dark colors and get brighter for later steps. The blue polygon is the set of all equilibria in the distribution
rock paper scissors (sampled), computed according to (Bok and Hladı́k 2015). Notice how the strategies of our meta-
learned algorithms begin in the polygon and refine their strategy to reach the current equilibrium. In contrast, (P)RM are
initialized with the uniform strategy and visit a large portion of the policy space.

of a fixed game very closely, often to higher precision than
the solver. This manifests seemingly as a lower bound on
exploitability for river poker (fixed), see Appendix B
for details. Importantly, even in the sampled setting, our algo-
rithms greatly outperform (P)RM, reducing the exploitability
roughly ten-times faster. Just like in the matrix setting, PRM
shows similar performance to RM, see previous section.

To further evaluate the improvements, we tracked how
many steps it takes to reach a solution of specified target qual-
ity, see Table 1. Both NOA and NPRM outperform (P)RM
for all target exploitabilities, with better solutions requiring

an order of magnitude less steps.

5.3 Computational Time Reduction
The reduction of the number of interactions with the environ-
ment may come at the expense of increasing the computa-
tional time, due to the overhead associated with calling the
neural network. This time also depends on other factors, such
as the selected domain, the available hardware, or the size
of the network. To assess the computational savings, we plot
our results as a function of wall time in Figure 5.

On rock paper scissors, the network overhead is
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Figure 5: Comparison of regret minimization algorithms as a
function of wall time, rather than number of steps shown in
Figure 3.

noticeable, making each step of our methods about 4× slower
than (P)RM. Despite this, our methods keep outperforming
(P)RM even after accounting for this extra cost. The offline
meta-training was performed in about ten minutes.

On river poker, interacting with the environment is
very expensive. Each interaction requires approximating op-
timal strategy12 in the subgame i.e. 1,000 iterations of CFR+.
Here, we observed the reduction in the number of steps trans-
lates well to the reduction of computational time. For exam-
ple, exploitability reached by NPRM after one minute would
take RM, resp. PRM approximately 26, resp. 34 minutes to
reach. The meta-training on river poker took two days.

We ran these experiments using a single CPU thread. As
neural networks greatly benefit from using parallel process-
ing, in some sense this can be seen as the worst-case hardware
choice. Furthermore, for larger games than the ones consid-
ered here, each interaction is typically even more expensive.

5.4 Out of Distribution Convergence
As stated before, NOA is not guaranteed to minimize re-
gret. However, NPRM is a regret minimizer even for games
g′ ∼ G′ ̸= G. Figure 6 shows both methods trained to min-
imize regret on rock paper scissors (sampled) and
evaluated on uniform matrix game (sampled). The re-
sults show that the performance of NOA deteriorates signifi-
cantly. This is expected, as it aligns with the no-free-lunch
theorems for optimization. However, NPRM is able to keep
minimizing regret even outside the domain it was trained on.
In this case, it even outperforms (P)RM.

5.5 Additional Experiments
While the previous experiments made use of the common
regret-matching-like setup, our meta-learning approach is
more general. We investigated two modification based on
previous methods. First, instead of aggregating the instanta-
neous regrets directly, we summed only the positive parts of

12We wrote a costume solver for river poker which outper-
forms other publicly available solvers. We made the solver available
on https://github.com/DavidSych/RivPy.
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Figure 6: Comparison of the converge guaran-
tees of NOA and NRPM. Both were trained on
rock paper scissors (sampled). Left figure shows
NOA and NPRM can out outperform (P)RM on the distri-
bution it was trained on. However, right figure shows that
when evaluated on uniform matrix game (sampled),
the performance of NOA deteriorates significantly.

said regrets, similar to (P)RM+ (Tammelin 2014). Second,
we used Hedge (Freund and Schapire 1997) instead of regret
matching to produce the strategy σ. We present results for
both of these approaches in Appendix C, and Figure 7. Both
meta-learned algorithms keep outperforming corresponding
equivalents of (P)RM.

6 Conclusion
We introduced two new meta-learning algorithms for regret
minimization in a new “learning not to regret” framework.
Our algorithms are meta-learned to minimize regret fast
against a distribution of potentially adversary environments.
We evaluated our methods in games, where we minimize
regret against an (approximate) value function and measure
the exploitability of the resulting strategy. Our experiments
show that our meta-learned algorithms attain low exploitabil-
ity approximately an order of magnitude faster than prior
regret minimization algorithms.

In the future, we plan to extend our results to the self-play
settings. We also plan to apply our methods with hindsight
rationality (Morrill et al. 2021) for games which change over
time. This is also an opportunity to combine our offline meta-
learning with the online meta-learning of (Harris et al. 2022).
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A Games
A.1 Matrix Games
The rock paper scissors is a matrix game given by

u1 = −u2 =

(
0 −1 3 +X
1 Y −1
−1 1 0

)
,

where the parameters X,Y are set to zero for the
rock paper scissors (fixed), and X,Y ∼ U(−1, 1)
for rock paper scissors (sampled). Note that the fixed
variant is a biased version of the original game. We opted for
this option to make the equilibrium strategy non-uniform, as
in the original game (P)RM are initialized with the equilib-
rium policy.

The uniform matrix game (sampled) is a 3×3 matrix
game with elements generated i.i.d. from U(−1, 1).

A.2 Sequential Game
For river poker, we use the endgame of no-limit Texas
Hold’em Poker with all public cards revealed. The currency
used is normalized such that the initial pot of each player is
one. The total budget of each player is set to one-hundred
times that amount, which implies there are 61,617 informa-
tion states in total. To create a distribution, we sample the five
public cards, and the beliefs for both players in the root of
the subgame. The public cards are sampled uniformly, while
the beliefs are sampled in the same way as (Moravcik et al.
2017). The algorithms presented in the main text are used
only in the public root state, and the optimal strategy in the
rest of the game is approximated via 1,000 iterations of self-
play CFR+. The corresponding approximate counterfactual
values were used as rewards xt. The exploitability of the
optimal extension was obtained by approximating the game
value (again via CFR+), and subtracting the value in the root
given the average strategy of each algorithm. We opted to
use CFR+ due to its strong empirical performance on poker
games (Bowling et al. 2015). Compared to value functions
represented for example by a neural network, this approach
offers strong guarantees and replicability.

B Approximate Value Function Error
To approximate the exploitability, one needs to approxi-
mate both the value function, and the game value of the
river poker. As stated above, we used CFR+ in self-play
to approximate both. During evaluation of river poker
(fixed), we used 10× more CFR+ iterations than in training,
to improve the approximation of both game value and the
value function. In this case, when used to approximate the
game value, it yields a solution with a two-player Nash gap of
approximately 1.6 · 10−5. The error is of similar magnitude
as the exploitability observed in Figure 3 for river poker
(fixed) and it explains the apparent lower bound.

During evaluation, we observed rapid changes of perfor-
mance of NPRM when we changed the number of CFR+

iterations. Since it was trained using 1,000 iterations, the
evaluation is effectively out-of-distribution. We hypothesise
that the reason why NPRM struggles more than NOA is that
PRM is very sensitive to small changes in the prediction when
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Figure 7: Comparison of regret minimization algorithms
against best responding opponent. The figures show ex-
ploitability of the average strategy σ. Vertical dashed line
separates the training (up to T steps) and generalization (from
T to 2T steps) regimes. The bottom row aggregates only pos-
itive regret, while the right column uses Hedge.

the cumulative regret is small. This makes not only the train-
ing challenging, but may also explain the sudden degradation
in performance observed on river poker (fixed).

C Alternative Setups
In this section, we show our methods can be combined with
two popular methods for regret minimization. First, similar to
CFR+ (Tammelin 2014), we aggregate only positive parts of
the regret Rt = [Rt−1 + rt]+. Second, we use Hedge (Fre-
und and Schapire 1997) to produce the strategy

σt =
eβ(R

t+pt)∑
a∈A eβ(Rt+pt)

, β =

√
2 log(|A|)

T
,

for NPRM, RM and PRM. We train and evaluate all algo-
rithms on rock paper scissors (sampled). Our results
are presented in Figure 7.

Aggregating only positive regret seems to improve the
performance of NPRM, and hinder NOA. Since RM+ was
observed to outperform RM on similar games (Tammelin
2014), it may be the case this helps NPRM as well. In contrast,
NOA receives less information through R. Hedge exhibits
slower convergence in general, and severely decreases the
performance of NPRM. Interestingly, higher values of α
perform better with Hedge. This corresponds to the fact that
in order to get a strategy far from uniform, the cumulative



regret needs to be large compared to when regret matching is
used.

Note that it is known the temperature β can be tuned,
leading to improved performance (Burch 2018). This can
also be done within our meta-learning approach, by allowing
the network to output β directly.


